1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
| import numpy as np import matplotlib as mpl mpl.rcParams['figure.dpi']=100 mpl.use('agg') import matplotlib.pylab as plt import ceviche from skimage.draw import disk from ceviche.modes import insert_mode from ceviche import fdfd_ez, jacobian import autograd.numpy as npa from scipy import constants
import multiprocessing import collections import json
Slice = collections.namedtuple('Slice', 'x y')
def viz_sim_init(epsr, source1, source2): """Solve and visualize a simulation with permittivity 'epsr' """ simulation1 = fdfd_ez(omega1, dl, epsr, [Npml, Npml]) _, _, Ez1 = simulation1.solve(source1) simulation2 = fdfd_ez(omega2, dl, epsr, [Npml, Npml]) _, _, Ez2 = simulation2.solve(source2) E01 = mode_overlap(Ez1, probe1) E02 = mode_overlap(Ez2, probe2) return (E01,E02)
def viz_sim(epsr, source1, source2, poles_list): """Solve and visualize a simulation with permittivity 'epsr' """ simulation1 = fdfd_ez(omega1, dl, epsr, [Npml, Npml]) _, _, Ez1 = simulation1.solve(source1) simulation2 = fdfd_ez(omega2, dl, epsr, [Npml, Npml]) _, _, Ez2 = simulation2.solve(source2) try: pid = multiprocessing.current_process().pid except: pid = "none_pid"
current_time = time.localtime() str_name = "WDM_{}_{}_{}_{}_{}_{}_{}_{}_{}".format( int(np.around(lambda1*10e8)), int(np.around(lambda2*10e8)), current_time[0], current_time[1], current_time[2], current_time[3], current_time[4], current_time[5], pid, ) ceviche.viz.abs(Ez1, outline=epsr, cbar=False) plt.axis("off") plt.savefig(r"./png/{}_1_0.png".format(str_name)) plt.close() ceviche.viz.abs(Ez1, cbar=False) plt.axis("off") plt.savefig(r"./png/{}_1.png".format(str_name)) plt.close() ceviche.viz.abs(Ez2, outline=epsr, cbar=False) plt.axis("off") plt.savefig(r"./png/{}_2_0.png".format(str_name)) plt.close() ceviche.viz.abs(Ez2, cbar=False) plt.axis("off") plt.savefig(r"./png/{}_2.png".format(str_name)) plt.close() ceviche.viz.abs(epsr, cmap='Greys') plt.axis("off") plt.savefig(r"./png/{}_3.png".format(str_name)) plt.close() fom = 1/(mode_overlap(Ez1, probe1) / E01 * mode_overlap(Ez2,probe2) / E02) recover_json = open(r"./png/{}.json".format(str_name), "w", encoding="utf-8") recover_Chrom = {} recover_Chrom[str_name] = [list(poles_list), float(fom)] json.dump(recover_Chrom, recover_json, indent = 4) recover_json.close() return fom
def init_structure(Nx, Ny, Nwg, Nwd, Nox, Noy, Npml, edge_N, index_font, index_background): epsr = np.ones((Nx, Ny)) * (index_font ** 2) epsr[0:Nwg, (Ny-Nwd)//2:(Ny+Nwd)//2] = index_background ** 2 epsr[Nwg:Nwg+Nox, (edge_N) * Npml:(edge_N) * Npml+Noy] = index_background ** 2 epsr[Nwg+Nox:2*Nwg+Nox,(edge_N) * Npml: (edge_N) * Npml+Nwd] = index_background ** 2 epsr[Nwg+Nox:2*Nwg+Nox,(edge_N) * Npml+Noy-Nwd:(edge_N) * Npml+Noy] = index_background ** 2 input_slice = Slice(x=np.array(Npml+Nwg//2), y=np.arange((Ny-Nwd)//2- Nwd, (Ny+Nwd)//2+Nwd)) output_slice1 = Slice(x=np.array(Nwg+Nox+Nwg//2), y=np.arange(edge_N*Npml+Noy-2*Nwd, edge_N*Npml+Noy+Nwd)) output_slice2 = Slice(x=np.array(Nwg+Nox+Nwg//2), y=np.arange( edge_N*Npml-Nwd, edge_N*Npml+2*Nwd)) return epsr, input_slice, output_slice1, output_slice2
def init_opt_structure(Nwg, circule_outer_radius, Npml, circule_inter_radius, epsr, index_font, index_background): m = Nox // (circule_outer_radius * 2) n = Noy // (circule_outer_radius * 2) poles = [] for i in range(m): for j in range(n): rr, cc = disk((Nwg+2*circule_outer_radius*(j+0.5), (edge_N)*Npml+2*circule_outer_radius*(i+0.5)), circule_inter_radius) poles.append([rr,cc]) epsr[rr,cc] = (index_font ** 2) return epsr, poles
def poles2list(poles, epsr, index_font, index_background): poles_list = [] for i in range(len(poles)): if epsr[poles[i][0], poles[i][1]][0] == index_font **2: poles_list.append(1) elif epsr[poles[i][0], poles[i][1]][0] == index_background **2: poles_list.append(0) return poles_list
def list2poles(poles_list, pole_index, poles, epsr, index_font, index_background): if pole_index == "full": for i in range(len(poles_list)): if poles_list[i] == 1: epsr[poles[i][0], poles[i][1]] = index_font ** 2 elif poles_list[i] == 0: epsr[poles[i][0], poles[i][1]] = index_background ** 2 else: if poles_list[pole_index] == 1: epsr[poles[pole_index][0], poles[pole_index][1]] = index_font ** 2 elif poles_list[pole_index] == 0: epsr[poles[pole_index][0], poles[pole_index][1]] = index_background ** 2 return epsr
def reverse_opt_structure(poles_list, poles, pole_index, epsr, index_font, index_background): if poles_list[pole_index] == 1: epsr[poles[pole_index][0], poles[pole_index][1]] = index_background ** 2 poles_list[pole_index] = 0 elif poles_list[pole_index] == 0: epsr[poles[pole_index][0], poles[pole_index][1]] = index_font ** 2 poles_list[pole_index] = 1 return epsr
def mode_overlap(E1, E2): return npa.abs(npa.sum(npa.conj(E1)*E2))*1e6
def objective(epsr, i="test", j="test"): Ez1, Ez2, str_name = viz_sim(epsr, source1, source2) plt.savefig(r"./log/test_{}_{}.png".format(i, j)) plt.close() return mode_overlap(Ez1, probe1) / E01 * mode_overlap(Ez2,probe2) / E02
import time def obj_cfunc(p): global epsr poles_list = p epsr = list2poles(poles_list, "full", poles, epsr, index_font, index_background) fom = viz_sim(epsr, source1, source2, poles_list) return fom
lambda1 = 1550e-9 lambda2 = 980e-9 omega1 = 2 * np.pi * (constants.c / lambda1) omega2 = 2 * np.pi * (constants.c / lambda2) dl = 40e-9 opt_size_x = 4800e-9 opt_size_y = 4800e-9 wg_len = 2000e-9 wg_width = 500e-9 index_background = 3.47 index_font = 1.22 outer_radius = 120e-9 inter_radius = 100e-9 pml_width = 400e-9 edge_width = 80e-9
Npml = int(np.around(pml_width/dl)) edge_N = int(np.around(edge_width/dl)) circule_outer_radius = int(np.around(outer_radius/dl)) circule_inter_radius = int(np.around(inter_radius/dl)) Nx = int((opt_size_x + 2 * wg_len)*10e9 / (dl*10e9)) Ny = int((opt_size_y)*10e9 / (dl*10e9) + 2 * edge_N * Npml) Nox = int((opt_size_x*10e9) / (dl*10e9)) Noy = int((opt_size_y*10e9) / (dl*10e9)) Nwg = int(wg_len*10e9 / (dl*10e9)) Nwd = int(wg_width*10e9 / (dl*10e9))
epsr, input_slice, output_slice1, output_slice2 = init_structure(Nx, Ny, Nwg, Nwd, Nox, Noy, Npml, edge_N, index_font, index_background) epsr, poles = init_opt_structure(Nwg, circule_outer_radius, Npml, circule_inter_radius, epsr, index_font, index_background) poles_list = poles2list(poles, epsr, index_font, index_background)
source1 = insert_mode(omega1, dl, input_slice.x, input_slice.y, epsr, m=1) source2 = insert_mode(omega2, dl, input_slice.x, input_slice.y, epsr, m=1)
probe1 = insert_mode(omega1, dl, output_slice1.x, output_slice1.y, epsr, m=1) probe2 = insert_mode(omega2, dl, output_slice2.x, output_slice2.y, epsr, m=1)
E01, E02 = viz_sim_init(epsr, source1, source2)
fom0 = viz_sim(epsr, source1, source2, poles_list)
iter_num = 100 for j in range(iter_num): for i in range(len(poles)): epsr = reverse_opt_structure(poles_list, poles, i, epsr, index_font, index_background) fom1 = objective(epsr, i , j) if fom1 <= fom0: epsr = reverse_opt_structure(poles_list, poles, i, epsr, index_font, index_background) else: fom0 = fom1 print(fom0)
|